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Publishi¥jscous effects on the Rayleigh-Taylor instability with background temperature

gradient

S. Gerashchenko! and D. Livescu® ®

U MPA-CMMS/CNLS, Los Alamos National Laboratory, Los Alamos,

New Mezico 87545, USA

2 CCS-2, Los Alamos National Laboratory, Los Alamos WMCG 87545,

USA \
The growth rate of the compressible RayleighTayQa\bih y is studied in the pres-
usin,

ence of a background temperature gradient, @, us 3 normal mode analysis. The
effect of © variation is examined for threesinterface £ypes corresponding to combi-
nations of the viscous properties of th ﬂC'xds (‘ﬁyiscid—inviscid, viscous-viscous and

viscous-inviscid) at different Atwoox r‘s’,’At, and, when at least one of the

fluids’ viscosity is non-zero, as a fungtion of the Grashof number. For the general

case, the resulting ordinary diﬂﬁk\\%%equations are solved numerically; however,

dispersion relations for the g%l@‘t are presented for several limiting cases. An
t

analytical solution is foun%\‘(\h inviscid-inviscid interface and the corresponding
dispersion equation fo%?vt rate is obtained in the limit of large ©. For the
viscous-inviscid case, a dispérsion relation is derived in the incompressible limit and

;% 0 case, the role of © < 0 (hotter light fluid) is destabilizing

of © # %1{ zé low At and/or at large perturbation wavelengths relative to
the d a} sizeMor all interface types. On the other hand, at small perturbation
waxelengtlis relative to the domain size, the growth rate for the © < 0 case exceeds

£
th nitg‘domain incompressible constant density result. The results are applied to

e
ﬂ
%ﬂi?actical examples, using sets of parameters relevant to Inertial Confinement Fu-
e AP
sio

Q\

asting stage and solar corona plumes. The role of viscosity on the growth rate
r;hlction is discussed together with highlighting the range of wavenumbers most af-
fected by viscosity. The viscous effects further increase in the presence of background

temperature gradient, when the viscosity is temperature dependent.

2)Electronic mail: livescu@lanl.gov.
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Publishihg INTRODUCTION

The Rayleigh-Taylor instability' * (RTT) occurs in a number of important natural phe-

nomena and applications, for example in supernova explosions and neutron stars,>” solar

corona,® earth oceans, atmosphere and mantle,'* > quantum p?én1a,1619 combustion,?°
Inertial Confinement Fusion (ICF).2122 Compared to its classic mulation, in most prac-

d, among which are the

tical cases, RTI manifests itself as an extremely complex procéss.f The complexity arises,
in particular, due to an inter-wined manifold of factor %\

iS

1 viseosity, surface tension and

density difference, compressibility, temperature distribut

' masssd

heat diffusion, geometrical and finite boundary Gicts, ific plasma and magnetic field
d

properties, etc. A lot of endeavor has been e ak;) to understand the implication of
-

RTI'g

h

other interfacial phenomena for the immiscible case iffusion for the miscible case,

these parameters and their combinations rowth. The stabilizing effects of vis-

in the classical work of Chandrasekhar. lusion of mass diffusion was shown to dump

cosity, surface tension and magnetic fi ld%e\t inear stage development were discussed
S

24-26

to zero the instability growth rafe inh Bt of large wave numbers. . The parame-

ter space increases substantially \b{
compressibility, material prope %ﬂph as specific heat ratio or viscosity dependence on

temperature, backgrou s‘t&%depend on different parameters, which independently affect
e

mpressible case, since various aspects (e.g. flow

the growth.2”2? Studying the astrophysical phenomena and ICF has inspired further interest
in understandin?h 11 d?velopment for the compressible case, sometimes in association
with other phenomeéna such as plasma effects, ablation, etc. Specifically for the ICF plasma,

the crucial r @the ablative??3933 and viscous®* effects on RTI have been highlighted.

Températute differences are often present across the Rayleigh-Taylor (RT) unstable layers
and d¢hn modifythe instability growth compared to layers of constant temperature. For
exampleyin the solar corona prominences, the temperature difference can reach 10°K and
duging t@g ICF coasting or deceleration stage up to 107 K. In oceans and atmosphere, due to
T’rﬁs%ce of inverted temperature regions, denser gas and water can occasionally be dumped
over less-dense material. In some specific theoretical studies of liquid-vapor interfaces with
temperature differences, the effect of mass and heat transfer was shown to be stabilizing or
destabilizing depending on whether the gas phase is hotter or colder than the liquid.*¢ In the

experimental work of Burgess et al.,>” heating from below was applied to RT unstable liquid-
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Publishi@-@ interface. The authors demonstrate that the restoring force provided by the temperature-
dependent surface tension can stabilize the interface. Ho®® studied RTI with two viscous
fluids of equal kinematical viscosities in the presence of heat and mass transfer. Thermal
effects on linear and nonlinear RTT in the presence of mass, heat transfer and magnetic field

were also studied in Ref.?® However, there has been no systematz'( study of the effects of

temperature differences on RTT for a range of parameters such as e:;>sity ifference, viscosity,

27 investigated

mperature and Yu and

and background stratification for the compressible case. Prx, Livescu
ndsge

the effects of compressibility on RTI with uniform bac

Livescu® extended the study to cylindrical geometry. This,gaperaddresses a more general
—

arly irst

the interface. For non-zero temperature conductQT} coe nt, more complex variations of
the background temperature would lead to uifstea y@kground states, which prevent the
e go

separation of variables and the reduction o

case, in which the background temperature varies lin direction perpendicular to

ning equations to ordinary differential

equations required by the normal mod aw.

Most studies to date of the line %e RTT with additional effects compared to the

classical incompressible case have been,performed for inviscid fluids. Some examples with
viscous fluids can be found in Re& 11d references therein. However, even when viscous
effects were considered, the visc Mf the two fluids were commensurate. Nevertheless, in
applications such as ICH an develop between fluids with vastly different viscosities. In
the ICF context, thigfis ;iFCNt:)She viscosity variation with temperature and the large tem-
b

perature differen een fhe hot spot and the surrounding material. Thus, the limiting

case in which neN

ity e viscous-inviscid interfaces has been studied for mixing layers*®* but,

ids is viscous and the other is inviscid is practically important.

to our krgwledge, not for RTI. Thus, in this study, we present the first investigation of the
i{terface in the context of RTT; the growth rate is obtained numerically for

infinite interfacial pressure (incompressible flow limit). The incompressible fluid limit (ratio

)42728 and the effects of different specific heats are not addressed

of specific heats, v — oo
since they are not directly relevant to the applications discussed here.

The paper is organized as follows. Section II presents the governing equations and the
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Publishiag:esponding zeroth (subsection II A) and first order (subsection II B) equations subsequent
to linearization. Sections III, IV and V describe the application of these equations to the
inviscid-inviscid, viscous-viscous and viscous-inviscid cases, respectively. Although this is
not the first study of the viscous-inviscid interface,*®*! to our knowledge this is the first time
when this is applied to RTT and the first time when a dispersion eqk}gtion for the growth rate
is presented. For the inviscid-inviscid interface, an analytical digpersion“equation is derived

in the limit of large background temperature gradient, which g a good estimate of the
Atwoo
1

growth rate even for small temperatures in the limit of s , At, and/or for large

wave numbers. Section VI presents a discussion of the resulfs fow three different At values
at several Grashof, Gr, numbers. Estimation value ;; th ensional growth rates are
numerically obtained in section VII for paramet@rele to the ICF coasting stage and
solar corona plumes and compared to the exiSting reLs- s in the literature. The effects of

temperature dependent viscosity are also consideredyhere. Finally, conclusions are provided

—~—

<
II. GOVERNING EQU@

in section VIII. The terms in the equations the“general viscous-viscous case are provided
in the Appendix. \

Taking the case of t

erimposed fluids with an interface at £; = 0 and the gravita-
( }

tional acceleration giyen 4,29,42

/ /4 Op _ Dpin
=+ —— =0, 1
3 Opu;  Optly,  9p 0T
y ot Ok 0% Oy

—g,0,0), the equations of motion for each fluid are

— Pgoir (2)

-~ 4 ope | Opéwn _ D . Dy 0 (A(‘)T)’ )

D T T T
W(giths viscous stress is Newtonian, 7;; = (04;/0%; + 0, /0%; — (2/3)(0uy/0%)d;5), and

lga flux is assumed to follow Fourier’s law. In these equations, a dimensional quantity
is\denoted by a hat, (*). To close the governing equations, ideal gas equations of state for
pressure and internal energy are used:

NP P
—RpT, é6=—"—— 4
p=RpT, ¢=52"5, (4)
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Publishiwgcre R is the gas constant and ~ is the ratio of specific heats. In the above equations,
material properties such as v and i can be different for the two fluids, but are constant for
each of the fluids unless otherwise specifically considered (e.g. when studying the influence

of a temperature dependence of i).

Ty = ;L = t\/; Pm = P%‘ P2,00)
U gi/ Dy = D Tm ,1%

Ui, = Uim

By defining:

Equations (1) - (3) can be cast into non-dimensional form. 1)1 these definitions, the dimen-
sional quantities defined at the fluid interface are@lo by an () subscript, (,,) subscript

indicates a quantity in either fluid 1 or 2, with flaid 2 at“the top, non-dimensional quantities

are unadorned, and L is the height of the@ upied by each fluid (half-height of the

total domain). These non—dimensionali%ply that there is a density jump across the
re

interface, but the pressure and temp continuous across the interface. Continuities

N
of the background pressure and femperature assume that the unperturbed configuration is
in thermodynamical equilibri t\ehterface, which is necessary to reduce the first order
equations to ordinary differential*eguations. This implies that the two fluids had been in

contact for sufficient ti e%abje the perturbation is applied.
0

Using the definitions }xb the non-dimensional forms of Egs. (1) -(3) become
/ / dp | Opuy,
)\ . + == 0 ,

ot 8£Ek <5>

apu; U 1 Op 0 1 ou; Oup 20y
£ ﬂxk M2 0z, * oxy, [\/G"r’ <8xk + or;, 30 6Zk>] PO (6)

op Ouy, uM? <8uj oup, 20y >8uj 8( K 8T)

ﬂ
dp 3
| _ —1 — 5.
i%— 7p6$k+(7 )\/GT (9$k (933j 361‘[ ik 8xk+78:ck Pr\/Gr al'k
(7)

&)n—dimensional numbers in equations (5)-(7) are: (a) the gravitational Mach number?"28,

characterizing the compressibility effects as the ratio between free fall velocity over the dis-
tance L and isothermal sound speed,
(8)

M2 — g[l (ﬁl,oo +ﬁ2,oo)

Poo
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Publishiftg the Grashof number, characterizing the importance of buoyancy relative to viscous forces,

AE3
Gr=92 9)

2
Vo

and (c) the Prandtl number, characterizing the importance of momentum diffusivity relative

to thermal diffusivity

Voo Poo

pr=——lfe \ 10
e — 1o Q‘é )
Note that in the context of RTI, the Archimedes number might_be*used to replace Gr. In

the non-dimensionalization used here, the Froude num

')u__‘c.li)e not appear explicitly.
Nevertheless, since the velocity perturbation amplitufle is small, the linearized analysis cor-
responds to the limit F'r — 0. On the other hanmd, neglecting the nonlinear terms in the
momentum equations, but keeping the visco gms,?yrresponds to the assumption that
the Reynolds number is small. However, sx:‘“ﬁe/ Fr there is no restriction on Gr

values for the linear analysis, so both limits — 0 and Gr — oo are valid in this con-

text. The nondimensional dynamic Vié;\it?cwfﬁcient is defined as p,, = i

_ fm
Doo (ﬁl,m+ﬁ2,oo) )
where the kinematic viscosity at the '\ﬂyf@e 1S Voo = (fl1.00/P1.00 T [12.00/ P2.00) /2, and the

nondimensional conduction coe £ IS K = 22 with Ao = (R1 + A2)/2. With the

above notations, M? and Gr cg\\beglependently varied by changing the pressure, p.,, and

kinematic viscosity, Vs, atithe interface.

q.(4), is written in non-dimensional form as

/ £ p = 2l (11)

\ cim
where 5

[A)m 0o
Uy = —————— . 12
" P1,00 + £2,00 ( )

The equation of stat

4

Thie linearized analysis can be performed in two ways. In the classical approach?32728, the

linearized equations are assumed valid throughout the domain, in which case the subscript

doesSnot appear in equations (5)-(6) and the variables are considered in the sense of
E’e&eﬁ 1zed functions. The discontinuity at the interface is treated by integrating the vertical

mentum equation over a small volume across the interface, which yields a jump condition
across the interface. This is the approach followed in this paper. However, for the rest of the
derivations, each fluid region is treated separately, in which case the subscript (,,) will be

used to distinguish between the two fluid regions. Alternately, one can consider the governing
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Publi shi<prg1 ations separately in each fluid region and treat the interface as a boundary. The vertical
momentum equations are integrated over each domain separately and the continuity of the
normal stress at the interface yields a condition equivalent to the jump condition from the

first approach. The two approaches are fully equivalent for the linearized equations.

A. Zeroth-order equations 3\

as small perturbations about the equilibrium (backgrou
_—

(0). For the (unperturbed) equilibrium state, uy = V&I‘i&%l depend on z; only and the

governing equations in each fluid region are ( -

9pom \ L:.) (13)
0
OPom ﬁ\Ubbm\ OPom
Mg 81‘3 O ’ ( )
Rm 8T0m)
Pry/Gr Oxy,

As far as we know, all pr@e of the linear stage of compressible RTI neglect

the heat conduction term in eq Indeed, if the heat conduction term is non-
zero, then the backgr nd ssure is not constant in time, which prevents the normal
mode analysis. Pre ous S d1 s were able to neglect this term by considering a uniform
background tem rat I)Vevertheless the heat conduction term also becomes zero for a
constant back I,b}\{nperature gradient, provided that the heat conduction coefficient is

fluid. Since in many practical applications such as ICF or astrophysics,

s inf the presence of background temperature variation, here we consider, for the

first time, thevgle of a background temperature gradient.

ndifion that the heat fluxes are equal on both sides of the interface is imposed by

fg 5202 8T . Thus, in dimensional form, it is assumed that the background temperature

meTy + T, with a = 0. 5(T2 TI)/L, where TI,Q are temperatures at
—|—L respectively, and T (T1/€1 + Tg/i})/(/ﬁ?l + Kp) is the temperature

at the interface. In non-dimensional form, the temperature variation is

Tom = Ok M?x1 + 1, (16)

7
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Publishi#gcre © = (T, —T1)/[2L(1/ Ry +1/R,)] and 0 < Ok, M? < 1. This nondimensionalization,
where the M? factor appears explicitly, highlights the condition that, as the incompressible
limit is approached following M — 0, the background temperature (and hence density)

becomes constant in each fluid region. Under these assumptions, the background pressure

is constant in time. Using the T, variation with x; (Eq. 16), Eq{(14) becomes
dem O!m]\42
_ . 17
dxy Or,, M2z, + 1pO Q (17)

The solution to this equation is -)
—~—

[e]

Pom = Doo (Oim My + ) =Erm (18)

)

This solution is normalized so that the nondimen@al p re at the interface is po,. Using

the equation of state, the density is obtained A\D
pom = i (© L) s (19)

The kinematic viscosity is then

. am_ 4

m £

Hom \ Ok, M*x, + 1)
Po R

0
In the subsequent analysis, a p \e‘kny dependence of the dynamic viscosity with tempera-
1&%\7\&11 e assumed, since this may be important in the practical

(20)

<7

ture, pom = ,U/OTrL,oo(e)]\/[2

applications considergd, as.the femperature can have large variations across the RTT layer.
The dimensionl:?is érmy sound speed can be written as ¢, = 2 = i(@ﬁmM 2r1+1).
d

POmMm
The equations w ose derived in Ref.?” when © — 0.

B. Fir -oWer quations

w /

Th interﬂsnce between the fluids is perturbed with an x5 and x5 dependent perturbation.

e locationof the interface can be described using the function z4(xq, x3,t), with dxs/0t =
uy. I isfurther assumed that the first order heat conduction term is small (large Prv/Gr).

Eeﬂ*the first-order linearized equations become

dp

o, tPoA+uiDpy =0, (21)
ot

Ouy 1 0 o [ Ouq 2 Ho

M~ _pp— Du; || =D A 22

8
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In these equations A = Juy/0xg, and D =
solutions to these equations are sought with the x5, x3 and

exp(i(kaxs + ksxs) + nt), where ky = koL, ks = koL. k i d‘?)ued
k32

I11.

b

temperature variation simply beco
equal thermal conduction coeffic
(23) into Fourier space, the e

the same notation was used for t

a

| This manuscript was accepted by Phys. Plasmas. Click here to see the version of record.

Qup 1 dp 0 o (Ous  Ouy\| 20 ( po (22b)
Pt = T M20w, | 0x; |Gr \Oz; | O15)] 30z \Var )
Ous 1 Op 0 po (Oug  Ouj 2 0 140
e N 9 A 22
Pt = T M20ws | 0 L/_GT (axj o )| " 30m \Vart) o
)
012 = —ypoA — u; Dpy . (23)

0/0x;. Followidg a hl mode analysis,

endenmes of the form

k2 + k%, so that

= k2 + k2. The growth rate, n, is nondimensionalifed as f/

5

INVISCID-INVISCID INTERFA

In absence of viscosity, u = 0; howev bac ground temperature gradient can still
W

M2
Xfo

e present. In this case, if heat condu urther assumed to be zero, the background
x + 1. The same relation is obtained for
the two fluids. After transforming equations (21)-
he amplitudes of the Fourier modes become (where

real space variables and their Fourier amplitudes):

Q = —poA —u1Dpy ,

(24)

1
=Y p P, Ponuy = — M2Zk2p pPonuz = M22k3p’ (25)
np = —ypo + M>uypy . (26)

Aft Le

’YCQPO Poly

mat}hg p, A, us, and uz from these equations, an equation for u; is obtained
n?(n? + yc2k2/M?)’

(4&%“ n2 + vc%?/M?} 0 {MZ( (27)

(27) gives the jump condition at the interface between the two fluids by integrating over

DU,1:|

U
D —D
n? + yc2k?/M?) u1]+n2 Pot

n infinitesimal element which includes the interface

| |+ [

9

v po
n? + yc2k? /M?)

Po
n? + yc2k? /M?

(28)

Us
+ ﬁapo = 07
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Publishiwg( re the subscript s denotes a quantity evaluated at the interface, whose location is given
by the equation x4, = 21, and 6f = f, — f_ with f, = f(zs +0), f- = f(xs —0). After
further simplifications, the equation for u; in each fluid (27) becomes

M? n ~Ok?

2 a(n? 4+ yc2k/M?)

=0. (29
ye? ye*n? * an?(f? +)/02k277\/[2)) (29)
Note that the coefficients in Eq.(29) are functions of x; because thé'sound speed is a linear

function of ;. Eq. (29) does not admit an analytical sol

D2u1 — Du1 (

i(;bu&g neral case and is solved

numerically using the following boundary conditionsf u; = 0%t x; = +1, continuity of wu;

at the interface, du; = 0, and the jump conditionEq. 28). »Vhen O =0, Eq.(29) becomes

identical to the differential equation derived i -’ ‘)
In the limit of large O, the coefficients in hﬂ)}aﬁ'dominated by temperature gradient
effects and the equation reduces to \
,y@k.Q 2 7@]{;4
D*uy — ¢D k = 0. 30
e a(n? + yck? /M N—i_ an?(n? 4+ yc2k? /M?) “ (30)

o
The solution to Eq.(30) is
1

\\ 2 2 2

ﬂWL\C’\\QTJF o (BRI 5 o (02

n?>  YOk>  OM?3n? 2 v Ok OM?
2 2

\ +02L(—%,2,2k<x1+ an ! )” (31)

£

om,2 1
Uy = ek (wﬁ' yor2 Tenr? )

YY) VE
where: U is the %ﬂu hypergeometric Kummer’s function of the second kind and L is the

associated La,

L}.%lenomial. The coefficients C;, C5 are determined to a multiplying
constant fr, hé conditions that u; vanishes at the rigid boundaries located at r; = +1

and thatSf ig’ continuous over the interface. After replacing u; in the jump condition, a

disperfsion equation for the growth rate can be obtained (not shown in the paper because of
it m&s@q)neness).
n th§ incompressible limit (M? = 0), the dispersion relation simplifies to an explicit
w‘?n{ a for the growth rate, n?/k = Attanhk, which corresponds to the finite domain
growth rate equation from Ref.?”. In this case, the normalized growth rate becomes zero
in the limit of small domain size with respect to the perturbation wavelength (kK — 0) and
approaches the infinite domain formula (n?/k = At) in the limit of large domain size with

respect to the perturbation wavelength (k — 00).

10
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Publishifg. VISCOUS-VISCOUS INTERFACE

For the viscous case, neglecting viscosity fluctuations in x5 and x3 so that viscosity varies
in z; direction only (i.e. consistent with viscosity dependent on the mean temperature), the

equations (21) — (23) become

np = —poA —uyDpyg , (32)
D 2D A

npolty = _VZ; —p+ \/g) (Dul — —) Ho D2 1 — 1/1 + —_— ], (33&)

ik D zk
npots = _M_Qf \/g (Duy — ikauy) + ‘).Is\2 ) (33b)

3 D zk
npous = —M—3§ + \/g (Dug — tksuy) + Ho %%y Kus + — , (33¢)
= —7Po (34)
Following a similar procedure as in the p S section, the equation for u; is obtained as

a fourth order ordinary differential eq t
AyD*uy + AsD N L+ Ay Duy + Aguy =0, (35)

where the coefficients A; ar\\ ppendix. The boundary conditions for Eq.(35)

are: vanishing velocity at the rigid boundaries, u; = 0 and A — Du; = 0 at x; = +1,
continuity of velocity d%lﬁ?ntial stress at the interface, du; = 0, 6(A — Duy) = 0 and
(S[/LO(DA — D2U1 — ul}] =

4 k2 |
_ D _|_— [
uﬂ} nvGr nv Gr

2 2

b d(po) + 2
= — u s _—
T

t s = x1. The jump condition is

—Po —|— ) (/,L()Du1>+ ) (D,uo) (DA—D2U1—]€2U1)S

6(p0)(A — Duy)s . (36)
gen Velomty, A, is given by
ﬂlA = BgD3U1 + BQD2U1 + BlDul + Bou1 y (37)

t e Coefﬁ(nents B and B; and expressions for DA and D?A in terms of the derivatives of
upare prov1ded in the Appendix. Since u; can be found only to a multiplying constant, the
boundary conditions are supplemented with the specification of u; or one of its derivatives at
one point inside of the domain. Then Eq.(35) with the boundary and jump conditions form a

closed set of equations from which u; on each side of the interface and the growth rate, n, can

11
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Publishih(g‘ letermined. Eq.(35) is numerically integrated on each side of the domain using a fourth
order Runge-Kutta scheme. In order to determine n and u; from the matching conditions
at the interface, a multidimensional secant method (Broyden’s method) is employed.*3 This
numerical method, where the equations are integrated starting from one boundary to the
next works very well at small to moderate G, but it can become u?‘{able at large Gr values.

An approach which can capture the case when Gr is large for e.;jf the fuids is described

in the next section. \

V. VISCOUS-INVISCID INTERFACE T~

In some practical applications (including the Q:sg&m)mns considered here), the vis-

cosity ratio between the two fluids is large enou OT)lat, for the range of wavenumbers

around the most unstable mode Correspond' o to e%f the fluids, the other fluid has negli-

gible viscous effects. In this case, the ﬁrst s to still be considered as viscous, while

the second can be treated as IIlVISCId ' s the equations to simplify considerably
compared to the fully viscous case a he use of the numerical integration method
described in the previous sectlon F and solar corona examples, the large viscosity

ratio between the two fluids 1&%\1{}% very large temperature difference between the hot
ICF ¢

spot and DT ice during sting stage and solar coronal plasma and prominence

h‘;t}t with these two examples, here we consider that the light

e lfeavy fluid is inviscid. Then the boundary conditions are: u; = 0 at

plumes, respectively.
fluid is viscous an

r, = %1, Vanls n tang tial velocity at the rigid boundary only for the viscous side, i.e.
A—Du; = Contmulty of uy at the interface, du; = 0 at 1 = z,, and vanishing
viscous t gentl stress at the interface due to slip condition, jg(DA — D?uy — k*uy) = 0
at . ﬂlké the viscous-viscous case, the tangential velocity is not continuous at the
interfg\THj: jump condition becomes

({L}% + ) (A= Dul)} + n\’;;_ré (oDuy)

w - - S+ (s~ Du). (39)

where 1o = 0 on the inviscid part and Gr corresponds to the viscous part of the interface.

In the incompressible limit (p,, — 00) and without temperature gradient (© = 0, M? =

0), a dispersion equation for the growth rate can be obtained. Eq.(35) for the viscous part

12
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D*uy — (nVGr + 2k*)D*uy + (nVGr + k) k*u; =0 (39)

and can be analytically solved

'\

= C1e?t 4 Che™ 1" 4 (4 ek 4 Che” "5\ (40)
)ses
—

o (41)

)

= Oyehm \kg (42)

where (' through Cj are constants of i {i After applying the boundary and jump

where ¢ = VnvGr + k2. Eq.(29) for the inviscid part b
k? Uy =

and has the solution

conditions to Eq.(40) and (42) to eliminate'the constants of integration, a dispersion equation

can be obtained as

(qC Sk ka 4k2R18k$@ R5€ R66 }
+ ( %Qsﬁt (¢ + k)] + 2R3Sk (¢ + k*) (kCiSy — qCySk)

Ry — R3)Sk [e7" (¢* + k) (qCy + kS,) — 2¢k*] =0, (43)

where the coeffi &gﬁned as Ry, Ry = At/(2n%)F2a1q/(nVGr); Ry, Ry = At/(2n*)F
2a1k‘/ n ¥ / 5, Rg = At/(2n?) + ag/k; Cy, S, = 0.5(e? £+ e77); Cy, S = 0.5(e” +
), wit upper 1d lower signs corresponding to the left and right coefficients, respectively.
Fo auda d[mam compared to the wavelength of the perturbation (k = kL > 1),

keepi only he dominant terms in Eq.(43) simplifies this equation to

& 405f2 (—k\/n\/G_+k2+k2 +n\/_> — kAt +n*=0, (44)
-

cre At = (po2 — po1)/(po2 + por). For the case of infinitely small viscosity on the viscous

side (Gr — o0), the first term in Eq.(44) becomes small compared to the other two terms
and the equation reduces to the classical inviscid-inviscid incompressible interface for an

infinite domain n2/k = At, or in the dimensional form 72/jk = At.?3

13
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The comparison of all three interface types for different At values in the simplest incom-
pressible case without temperature gradient (M? = 0, © = 0) is shown in Fig. 1. As Gr
increases, the normalized growth rates obtained for the viscous 0%{% approach the limiting

7L

inviscid case results for some low k range which increases wit t. “Miscous cases have a

most unstable mode close to k &~ 2 (the wavenumber location Qases with At), which is

relatively insensitive to Gr. While for all viscous and viscous-inyiscid cases the normalized

growth rate goes to zero as k — oo, it is interesting to menti e growth behavior around

the most unstable mode. When one side is inviscid, the re$u 5 are very close to the fully

inviscid case at high At, with larger differences a( lew At values. Compared to the viscous-
r

viscous case, there are noticeable differences fo ®ous-inviscid case results at all At

-

values. \

N ) }h - | p—
8 10 12 14
“ —— "L'L""‘"L"uv‘u‘::u..‘iuuw
8 10 12 14
————TTm e e
—— -
) e L ]
T T T S T e T e s e e e e b e e e 1
8 10 12 14

e N
G. 1. Growth rate normalized by wave number n?/k = 72/kg for M? = 0, © = 0. Plots from
top to bottom: At = 0.9, 0.5, 0.25. Thick solid line: inviscid-inviscid, thin lines: viscous-viscous,
thick non-solid lines: viscous-inviscid. Dashed line: Gr = 10, 000, dashed-dot line: Gr = 1000, dot

line: Gr = 100.
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in Fig. 2. For the compressible cases, we chose M? = 1 as representative. The role of M? on

the instability growth was discussed in Ref.2” Negative background temperature gradients

N

0 2 4 6 8 QO) N1z 1

‘imiizid—inviscid case. Plots from top to bottom: At = 0.9, 0.5, 0.25.
.95 = 1, solid thin line: © = 0, M? = 0, solid thick line: © = 0,

M? =1, dashed t in line; @A 0.9, M? = 1, squares: © = —0.9, M? = 1 from Eq.(30), circles:
© =09, M? = 1.25\( 30).

(© < 0),%orrésponding to hotter light fluid, yield growth rates larger than those obtained
for © f= 0. Thus, the effect should be destabilizing for the two applications considered in this

paper. Both fhe negative and positive temperature gradient effects are more pronounced for

aller }’t and smaller & (k < 6). This is consistent with the variation of the background
?b&ti\ cation subsequent to the variation of © (Fig. 3). Thus, the integral Atwood numbers,

, presented in Table I, show larger differences between positive and negative © cases at
small nominal At. Here, At; values are calculated using the background density integrals
over the heavy and light fluid regions, respectively.

While the growth rates obtained for © < 0 are larger than those obtained for the ©® = 0

15
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Case Atr | Atry |0 AL+ 5n2/k':|:

At =10.910.92]0.56 | 0.36 | 0.08

At =0.510.63 [-0.39] 1 0.26 /
At = 0.25| 0.45 |-0.65| 1.1 0.3

0Atr+ = Atj_ — Atry. The integral densities, py, 1, are calcu rating the background

TABLE I. Integral Atwood numbers, Atr+ = (p2,1+ — p1,1+) + 14 and their differences,
Kﬁ’\m

density profiles over the two fluid regions. The dlﬁerences @-.t.be growth rates, on?/ky =

n?/k_ —n?/k,, are calculated from Fig. 2 at k ~ 2. refer = 0.9 and © = —0.9 cases,

respectively. M? = 1.

FIG. 3. )3ackground density profiles, pg = « (@M2x1 + 1)_%_1. Plots from top to bottom:
%9, 0.5, 0.25. Dashed thick lines: © = —0.9, M? = 1, dashed thin lines: © = 0.9, M? = 1.

incompressible constant density case in an infinite domain (n*/k = At) for k sufficiently
large. Again, this is consistent with the background density variation and the fact that

O < 0 growth rates are larger than © = 0 growth rates and the latter should approach the

16
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Publishi:’n@ mpressible constant density infinite domain results as & — 00.2” Since the normalized
growth rate starts from small values and approaches the asymptotic value n?/k = At from
above as k increases, there is a maximum normalized growth rate which, interestingly, occurs
around k & 2, similar to the most unstable mode obtained for the viscous cases. Again, this
effect is more pronounced at small At and becomes negligible as 12/ approaches 1.

The results for the growth rate obtained analytically from Eq@64dn thelarge temperature
gradient limit are also presented in Fig. 2. The analyticalor B?a follows the numerical
results for a finite temperature gradient and approxima X@sults well for small At

and/or large k values (large domain size compared to t‘l_lf fturbation wavelength).

Figure 2 also shows that the compressible growth rate Witi) © = 0 can become larger than

the corresponding incompressible growth rate at t =0.

d k < 2. This overshoot occurs
in a different parameter range than that Studie‘&ﬁ@ Nevertheless, unlike the overshoot
lize

studied in Ref.?, in this case, since the % i growth rates for compressible and in-

compressible ©® = 0 cases increase mon%\mth k, the infinite domain incompressible

constant density growth rate still r he upper bound.

The effects of the background' tem ahe gradient on the normalized growth rate for
viscous-viscous and viscous-i er part / light fluid — viscous, upper part / heavy
fluid— inviscid) cases are Shov;nX\Qg 4 and Fig. 5, respectively. Viscosity is important at

all scales and dominat aﬁ&se k, when the normalized growth rate asymptotes to zero.

Similar to the invisci —iI}Vl id Anterface, a © < 0, corresponding to hotter light fluid, has a

destabilizing effe while ©/> 0 has a stabilizing effect. The destabilizing effect of © < 0

is more prong d low At and becomes smaller as At — 1. The peak of n?/k (most

ith respect to its location corresponding to the ©M? = 0 case shifts to
larger k “alués for

unstable
> 0 and to lower k values for ©® < 0. This effect becomes more
pronofinced smaller At values. The results are qualitatively similar for the viscous-

inviscid“gases though these are closer to the © = 0 results at high At values. For the

V1 ’ous—1§viscid case, Fig. 5 also shows the results obtained from the dispersion relations

%(4\3 and Eq.(44) derived for incompressible, constant temperature case. The dispersion
rélation (43) gives identical results with those calculated numerically by integrating the
governing ordinary differential equations. The simplified formula (44) does not produce the
correct k — 0 limit, as expected, but becomes a good approximation for k£ Z 2. The growth

rate for inviscid-viscous case (lower part / light fluid— inviscid, upper part / heavy fluid —

17
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FIG. 4. Growth rate for viscous-vis ous% eomputed at Gr = 1000. Plots from top to bottom:

\K_

thick line: © = 0, M2 = 1, dashe Ne: ©=0.9, M2 =1.

At = 0.9, 0.5, 0.25. Dashed thick li —0.9, M? =1, solid thin line: © = 0, M? = 0, solid

viscous) is qualitativelysgimilar but slightly smaller in magnitude than for viscous-inviscid

interface (not showxf here).

A V.

VII. APPEICAT TO ICF AND SOLAR CORONA

ectdon, the viscous-viscous and viscous-inviscid formulas are applied to two practi-

cal siffliations: “tlie coasting phase in ICF and solar corona plumes. While these applications

1any other complicating plasma physics effects, we demonstrate what a normal

c in
m%lysis using two immiscible fluids predicts for the range of parameters associated

w GUC applications. Results from normal mode analysis with immiscible fluids have been
routinely used for these applications to qualitatively predict the importance of RTI and, as
far as we know, this is the first time when such an analysis is used with viscous (or viscous-
inviscid), compressible fluids with a background temperature gradient. We further assume

that the density variation across the domain is concentrated at the interface such that the

18
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FIG. 5. Growth rate for viscous-invisci egmputed at Gr = 1000. Plots from top to bottom:

\K_

thick line: © = 0, M? = 0, das \Hﬁn\line: © = 0.9, M? = 1. Squares: from Eq.(43) for the

At = 0.9, 0.5, 0.25. Dashed thick li —0.9, M? =1, solid thin line: © = 0, M? = 0, solid
incompressible, uniform b, ckgzgld temperature case, circles: from Eq.(44) for the large domain

size compared to the pérturbation wavelength case.

£
A
nominal At nunibers are tched.

In ICF, ighi Q is triggered by a hot spot at the center of an imploded fuel shell.21:?2 The

hot spotdorméationwrequires implosion symmetry, which is hindered, in particular, by the
develgpment 1(1”1. The focus of the present study is the instability that forms during the
co EE.} or d}celeration phase, before stagnation, when the dense fuel shell is decelerated by

preséyre exerted by the hot and less dense inner plasma. Curvature effects are neglected

alysis; this implies that the results are not applicable at small wavenumbers, i.e.

N
= 1/R (R — radius of ICF shell).

The input parameters for the numerical calculations are taken from Weber et al.?* Fig. 6
shows the radial profiles, averaged over 47, corresponding to the beginning of the coasting

phase. In their computational study, Weber et al.>* considered the importance of plasma

19
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FIG. 6. Profiles from Weber et al{ (Fig
jumps applied in the present s 10ns.<Circle in the pressure profile: pressure Py = 1.5Gbar

i at
applied in the present simulations. Cigcles in the temperature profile are the temperatures on both

5575]6‘6‘/ applied in the present simulation and corresponding to
with Th, = (To + T1)/2 = 0.6keV.

sides Tl = 1.15keV and

A
computationa uNng ILES (implicit Large Eddy Simulation), Haines et al.*> investi-
gated the Q)lasma viscosity and diffusion on the turbulent instability growth under
the ICF ‘®gnditions® The main conclusion reached in these studies is that the small scale
turbulent mot <resulting from RTT are damped by the increased viscosity in the hot spot,
while only the large scale perturbations, possibly carrying over the imprint of laser non-
u 'formiyies, survive. The normal mode analysis described here does not account for mass
‘d‘rguilon, but it is still interesting to see what it predicts for the range of wavenumbers likely
togurvive the damping due to increased viscosity of the hot fluid.

One degree of uncertainty related to the set of parameters described above is the vertical

extent of the domain. As explained in section IV, the numerical integration method used

here becomes unstable at large Gr values and increasing the domain size has the effect of
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PUbliShih]g] easing the overall Gr. On the other hand, small domain sizes are affected by finite size
effects and yield lower growth rates. Thus, first the influence of L is examined. Fig. 7 shows
the growth rate in dimensional form in the approximation of viscous-inviscid interface and
uniform background temperature for different L values. The inviscid-inviscid case is also
presented for comparison. The growth rate increases significantly as L increases from lum

~Lhe Tget to Fig. 7 shows

the peak value and the peak location of the growth rate as a f $i0n of L. For L > 5um

both the peak and its location almost do not depend on %t\

e:jn‘%fged results. It can also be

to 10pum; however, it appears to converge as L approaches 10u

in size, which means that
calculations made with the domain size L = 10pm provi
concluded from the comparison of the viscous-invisc znd Snv cid-inviscid interfaces that
viscosity has a strong damping effect on RTI tﬁ;ng t oasting phase, pointing to the
importance of including the physical transporfuin the @lti—dimensional calculations.

Fig. 8 presents the effect of © on the gr. rate.\ The temperature gradient is estimated

from Fig. 6 and corresponds to non-di e%value O = —0.88. © # 0 adds only about
K@

/;f/

0.5% to the peak growth rate in the¢case ofigemperature independent viscosity. Using tem-
perature dependent viscosity, ﬂo,v/’f’go)”, where the exponent follows the formulas
derived in Braginksii*, reduces t&é&& ore noticeably by about 10%. The wavenumbers
least affected by viscosity and showingssignificant growth are around the most unstable mode

and lie in the range k ~

‘171951 to k ~ 8um 1

e qualitatively compared with previous results related to the ICF
£

les dnclude the effect of ablation, though they do not account for

The results can

coasting.3?4% Thege s

the presence of-yiscosity in the hot spot. Fig. 9 shows the growth rates at two representative

accelerations:

(§ = 10"

t Ahe very beginning of the coasting phase after the lasers were turned off

1/s%), and at the so called continuous deceleration phase (§ = 31-104m/s?).32 Tt
can bg conclu <( that the ablation process has stronger dumping effect than just inclusion
of arigcosity, I§Jt taking into consideration both these effects can lead to even larger decrease
in\the grgwth rate. In addition, the destabilizing effect of the negative temperature gradient
ith temperature independent viscosity is found to be negligible compared to the ablation

S bﬂ\ization (compare Fig. 8 and Fig. 9 for g = 10'm/s?).
In ICF, RTI grows at micron scale. It would be interesting to compare the results to large

scale applications. As an example, the solar corona is considered here where the instabilities

can develop on hundreds to thousands kilometers scale. RT-type instabilities are formed
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FIG. 7. The dimensional growth rat mased on the parameters from Fig. 6 in the
viscous-inviscid interface limit: At 104m/s?, v1 = 42 = 5/3. Solid thin lines
from top to bottom: L = 10pum, 3%&@ Lum, for iy = 1000g/cms, fia = 0g/cms, thick solid

line: inviscid-inviscid interface at wm. L = 10pm corresponds to M? =~ 0.2, Gr ~ 10.

/

Inset: peak value of the m‘e?ls'%nal growth rate (upper) and its location (lower) as functions of

the domain size.

V.

at the interfac 4 quiescent low density coronal plasma and the prominence plumes of
Qﬂ the chromosphere, providing At = 0.6 + 0.7 and © ~ —0.9.454® Because

na is strongly magnetized, there is a dumping effect of magnetic pressure
on the'mstability’ growth, that, in addition to other complex plasma properties, is not taken
in 0a untSn the present estimates.

n Fié 10, the growth rate is calculated based on the parameters derived from Refs.6-48

NI& imit of the viscous-inviscid interface without temperature gradient. Similar to the
previous calculations, the influence of the domain size is examined first. The inviscid-
inviscid interface is also shown for comparison. The inset to Fig. 10 demonstrates that, for
L % 200km both the peak growth rate and its location almost do not change. As in the

previous example, viscosity plays a significant role, especially at k> 0.5km™L, Fig. 11 shows
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FIG. 8. Dimensional growth rates calc laé\s‘%z\on the parameters from Fig. 6 in the viscous-

inviscid interface limit: L = 10ums and Y1 /="4000 g/cm s, fig = Og/cms. Solid line: constant
temperature © = 0, M? =~ 0. ,M

O =-0.88, M?2~0.2, & =2.5.

O = —0.88, M? ~ 0.2, £ = 0, dashed-dot line:

V1 ‘ou§nviscid interface. Similar to the previous results, the effect

¢ r%heye perature dependent viscosity, with the wavenumbers least

the effect of © for t

is more pronounc

affected by viscésity, an owing significant growth lying in the range k ~ 0.01km™! to

k ~ O.5ml.Q

y.
{4

VIII ?3031 LUSIONS
ﬁ

Using)a normal mode analysis, the effects of viscosity and background temperature gra-

Wt,\ , on the growth rate are systematically studied for the compressible RTT with two
niscible fluids. When the effects of heat conduction are considered, a uniform © # 0
still allows a steady background state and the linearized equations reduce to ordinary dif-
ferential equations. This relaxes the assumption made in previous normal mode studies of

compressible RTI, which satisfied the requirement of a steady background state by using

23


http://dx.doi.org/10.1063/1.4959810

! I P | This manuscript was accepted by Phys. Plasmas. Click here to see the version of record. |

Publishing

70

60

50

: N

KQ‘“ f

o~ )

0 o5/ 1 w15 2

10 k(
R ——C A
0 I I I 4 I I

|
0 1 2 3 4 NG s 6 7 8
)

FIG. 9. Dimensional growth rates c lcuh based on the parameters from Fig. 6 in the viscous-
inviscid interface limit for L = 10p N — 10'*m/s% (lower curve), § = 31 - 10'*m/s? (upper

n(ns™h

3
n (ns_l)
[e0]
&

curve). Inset: dimensional gro M calculated using the formula 65 and parameters from

Ref.32 with § = 1014m/82Kcurve , g =31-10'%m/s? (upper curve).

uniform backgr? pey&ture. Allowing © # 0 makes the analysis closer to practical
applications suc %ﬂqa d solar corona. The non-dimensional growth rate, n?/k = n?/ l%f],
is presente gmction of the non-dimensional wave number, k = kL, and analyzed for a
range of A/ and humbers, with positive and negative background temperature gradients,
as well as fo oépressible and incompressible flow (p,, — o) cases. The incompressible

7318 as well as the effects of different specific heats were not addressed since they

ale not Srectly relevant to the applications discussed in the paper.

Y&e results are presented as a logical set from three different interface types corresponding
toycombinations of the viscous properties of the two fluids: inviscid-inviscid, viscous-viscous
and viscous-inviscid. The viscous-inviscid configuration has not been studied before in the
context of RTT and provides a convenient way of addressing applications with large viscosity

ratios between the two fluids, as in the examples mentioned above.
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FIG. 10. The dimensional growth rages fomar corona calculated in the viscous-inviscid

interface limit: At = 0.67, © = O,%\hk’m/sa v1 = v2 = 5/3. Solid thin lines from top to

R

inviscid interface at L = 200km. m corresponds to M? ~ 1, Gr ~ 900. Inset: peak value

of the dimensional growt%pper) and its location (lower) as functions of the domain size.
£

For two limiting casés, t}e inviscid-inviscid configuration at large © and incompressible

bottom: L = 200km, 50km, 25km 10kg/kms, fia = Okg/kms, thick solid line: inviscid-

viscous-inviscid- configuration with © = 0, the dispersion equations for the growth rate

are obtaine Qrtically. The former case shows good correspondence with the numerical
results at large and/or large wave numbers, so that the analytical result can be used

insteafl of nu xzcal calculations for such ranges of parameters.

I, gemeral{ for all cases, the effect of © < 0, corresponding to hotter light fluid, is found to

b desta&lizing and that of © > 0 stabilizing compared to the background state with © = 0.

"ﬂ?s& results are consistent with the corresponding background density stratifications. The
effect of © # 0 is stronger at small At and becomes small as At approaches 1 for all cases. In

the limit of large k, the effect diminishes and the growth rates approach the corresponding

O = 0 case. On the other hand, for the inviscid case, at small k£ values, the growth rate

obtained with © < 0 exceeds the infinite domain incompressible constant density result,
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FIG. 11. The dimensional growth ratessfor th‘morona calculated in the viscous-inviscid inter-

face limit: L = 200km and fi; = 1 g/kbaﬂ'& fia = Okg/kms. Solid line: constant temperature

© = 0, M? =~ 1, dashed line: @ = \
§=2.5. \

n?/k = At, so that t s%‘@ no longer an upper bound for the compressible growth rate
= 0 cascNifien,
ugge

2~ 1, £ =0, dashed-dot line: ® = —0.9, M? =~ 1,

as in the © =0 ?s n,since n?/k corresponding to © < 0 should approach the value
At from above h%\ the existence of a peak in the normalized growth rate variation
with k. The a@itude of the overshoot relative to the n?/k = At value decreases with At,

consistent with t est of the results.

The effect \/1/scosity on the growth rate is important for all At numbers and at all scales
b t_‘Qe mes}jominant at large k. As Gr increases, the viscous growth rates approach the
limiting leviscid case results for some small range of k and this range becomes larger with At.

‘\Lisco
~

almost insensitive to Gr. The viscous-inviscid growth rate is closer to the fully inviscid

ases have a most unstable mode at k &~ 2 (the wavenumber location decreases with

case at high At, with larger differences at lower At values. Compared to the viscous-viscous

case, there are noticeable differences for the viscous-inviscid case results at all At values.

The results are applied to two practical examples displaying RTT — coasting phase in ICF
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Publishi:mrg' solar corona plumes. The results demonstrate the importance of inclusion of viscosity,
which can significantly damp the growth rates starting from as small wave numbers as
ko~ 0.5um™~! for ICF and k ~ 0.02km™" for solar corona. For both applications, © # 0 has
no significant influence on the growth rates for constant viscosities, but when viscosity is

allowed to vary with temperature, the effect becomes noticeable. /\
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Appendix: Equation for the x%e

In the following derivatio mic viscosity is assumed constant on the different
sides of the interface and the km patic viscosity is considered continuous over interface,
so that p01/po1 = o here to.m/Pom = Gr Y2 (Ok, M2z + 1)om/(Orm)+1  The

equations for u1 and A on e Slde of the interface can be written as
u1 + A3D U + A2D2U1 -+ AlDul + A0u1 =0 s (A].)

/ 51A B3D3U1 + B2D2U1 + BlDul + Boul 5 (A2>

wherefthe co o‘[énts (with subscript (,,,) is dropped for simplicity) are given by
) s

—— _
&5 Ar=—"Bs, (A.3)
B2 Dp, v—1
n

Bs
\ ~ Ag = aM2n (— ﬁl —+ DB3 + Bz) — B3 , (A4>
B Dp, By v—1 B3
A, Ve 3, + DBy + By By + aM2n61 ) (A.5)
B Dj, B, -1 B
A= A 3, + DB + By " B — (A.6)
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Publishing - (_D%Bo +DBO> LT (n+ K8y )61, (A7)
1
By = —af]\z/[ﬁﬁgn:,' (52 + BS <A8)

B Dp,
2= s (1= 2are) 2~ (0 (K )
aMl2ng ((7 —-1- ) Bs + (B2 + 53 % (A.10)

1 Dps, 2, K s Bok?
BO_aM2n3 <(7_1_04M2> <n HPSYE & aM?)’ (A-11)

By =

By = oM (A.12)
(A.13)
1 DB
pr = e ((n2 + 1-— aM22>) : (A.14)

with DB3, DBy, DBy, DB, obtaine %f\l erentiation of Eq. (A.8) — (A.11), and Dfs,
Dpy, Dp; after differentiation of (A 2) — (A.14), respectively (not shown).

The equation for DA can

M2 1 k?
. ﬁ) a]\/[32n ur + —Duy + (n—|— aMﬁ?S ) ) : (A.15)
?/A

and the equation

2 2
= Dgz )A—%DS 1+<52 (DB2Bs — B2DPs) + 0‘2;‘[ )D2u1

— —) Duy + ﬁ— (K*(B2DB3 — DBafs) — aM*n®Dfa) uy . (A.16)
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